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Abstract. A one-dimensional driven lattice gas with disorder in the particle hopping
probabilities is considered. It has previously been shown that in the version of the model with
random sequential updating, a phase transition occurs from a low-density inhomogeneous phase
to a high-density congested phase. Here the steady states for both parallel (fully synchronous)
updating and ordered sequential updating are solved exactly. The phase transition is shown
to persist in both cases with the critical densities being higher than that for random sequential
dynamics. The steady-state velocities are related to the fugacity of a Bose system suggesting a
principle of minimization of velocity. A generalization of the dynamics, to the case where the
hopping probabilities depend on the number of empty sites in front of the particles, is also solved
exactly in the case of parallel updating. The models have natural interpretations as simplistic
descriptions of traffic flow. The relation to more sophisticated traffic flow models is discussed.

1. Introduction

The asymmetric simple exclusion process (ASEP) is an archetypal example of a driven
diffusive system [1, 2] for which analytical results are possible, particularly in one dimension
[3]. The model comprises particles which hop stochastically in a preferred direction with
hard core exclusion imposed. The model has a natural interpretation as a simplistic
description of traffic flow on a one-lane road and indeed forms the basis for more
sophisticated traffic flow models [4, 5]. In particular, one may cite variations of the model
proposed originally by Nagel and Schreckenberg [6–12].

However, a basic difference between the original ASEP and traffic flow models lies in the
updating scheme. In the mathematical literature, the ASEP is usually defined in continuous
time or, equivalently for the purposes of simulation, by a random sequential updating scheme
where for each update a particle is selected at random. In contrast, when simulating traffic
flow, parallel updating is usually employed for reasons both idealistic—parallel dynamics
provides a perhaps more faithful representation of real traffic—and pragmatic—parallel
dynamics yields economy of random numbers.

For random sequential dynamics a relative wealth of exact results on the ASEP are
now available [2, 3, 13–19], in particular, the steady states of various models have been
constructed using a matrix product ansatz [3, 14, 20–24]. This technique has been extended
to a sublattice parallel updating scheme [25–27] and, in the case of open boundary
conditions, to an ordered sequential scheme [28, 29]. However, for fully parallel dynamics
only a few exact results are known [8, 30].
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In this paper we determine exactly the steady state of an ASEP with disorder for
both parallel dynamics and ordered sequential dynamics, in the case of periodic boundary
conditions. The disorder takes the form of quenched random hopping probabilities assigned
to each particle. Other types of disorder and inhomogeneities, such as random rates
associated with lattice sites [32], slow defect sites [31, 33, 27] or slow defect particles [34, 35]
have been considered. The random sequential version of the disordered model considered
here has previously been studied [36–38] and a transition shown to occur between a low-
density inhomogeneous phase, where a traffic jam forms behind the slowest particle, to a
high-density congested phase.

In this paper it will be demonstrated that this transition persists under parallel and
ordered sequential updating. The difficulty in obtaining exact results for parallel dynamics
and ordered sequential dynamics lies in the construction of the transfer matrix. Using a
technique inspired by [39] we explicitly construct the transfer matrices in a convenient form
that allows the steady states to be demonstrated.

From the point of view of traffic flow, the phase structure of the disordered model
is of interest since the disorder induces emergent jams at low densities, whereas in other
traffic flow models where a phase transition occurs it is in the high-density phase where
the jams emerge [9, 11, 12]. The coarsening of the resulting jams has also been studied
[40, 10, 38, 41]. From a theoretical viewpoint it was shown in the random sequential case
that the transition has a strong analogy with Bose condensation [37] and that the steady-state
velocity of a particle was equivalent to the fugacity of an ideal Bose gas. This analogy will
be pursued here for the parallel and ordered sequential cases and it will be shown that the
steady-state velocity remains related to the fugacity of a Bose system.

It is of interest to determine whether distinct updating schemes can produce different
behaviour. It turns out that the value of the critical density may depend on the updating
scheme. It will be shown that the critical density is highest, implying the throughput most
efficient, for a backward-ordered updating scheme where the updating sequence is opposite
to the direction of flow of particles. In contrast, the random sequential updating scheme
yields the lowest critical density.

Another key difference between traffic models (e.g. the model of [6]) and the ASEP is
that in traffic models particles may move a distance greater than one lattice spacing, thus
implying that the dynamics is not nearest neighbour in the sense that cars are aware of
cars several lattice sites ahead. At present, analytical results are not generally available
for the case of hopping more than one lattice site, although a step towards this goal has
been made [30]. On the other hand, dynamics of a range greater than nearest neighbour
may be mimicked by letting the probability with which a particle hops forward depend on
the number of empty lattice sites in front of it. Indeed, the concept of a braking distance
furnishes a natural interpretation for hopping probabilities which increase as a function of
the empty space in front.

In this paper we solve the steady state of a generalization of the dynamics where the
disordered hopping probabilities are dependent on the empty space in front, restricting our
attention to parallel updating.

This paper is organized as follows. In section 2 the model and updating schemes
considered are defined and exact expressions for the steady states are presented. The proof
of these expressions is somewhat technical and is deferred until section 4. Prior to that,
in section 3, the phase transition and the analogy with Bose condensation is analysed. In
section 5 the generalization of the model to the case of space-dependent hopping probabilities
is considered and in section 6 conclusions are drawn.
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2. Model definitions and steady states

In this work we study asymmetric exclusion models where the particle hopping probabilities
are quenched random variables. We considerM particles labelled{µ = 1, . . . ,M} hopping
on a one-dimensional lattice of sizeN sites labelled{i = 1, . . . , N} with periodic boundary
conditions (siteN+ i = site i). The random sequential version of the model was considered
in [37]. We now define three distinct variants of the model according to the following
dynamics.

Parallel dynamics. At each time-step all particles{µ = 1, . . . ,M} simultaneously
attempt to hop forward each with its own probabilitypµ. A hop is only carried out if
the target site was emptybefore the update. Since no backwards hops are permitted, the
question of what would happen if two particles simultaneously attempted to hop onto the
same site does not arise.

Ordered sequential dynamics. In this case a time-step corresponds to updating each
particle in a fixed sequence. At each update the relevant particleµ attempts a hop forwards
with probabilitypµ. We consider two sequences for the updating:

Forward updatingin which the order is 1, 2, . . . ,M;
Backward updatingin which the order isM,M − 1, . . . ,1.

Since particles cannot overtake, the sequence of particles is preserved in all three
variants.

2.1. Expressions for the steady states

In order to express the steady state of each variant of the model defined above, we consider
the weightF(n1, n2, . . . , nM) of a configuration comprising particle 1 followed byn1 holes
(empty lattice sites); particle 2 followed byn2 holes, etc. The weights are related to
probabilitiesPN({nµ}) via a normalizationZN,M defined by

PN({nµ}) = F({nµ})/ZN,M. (1)

We now present exact expressions (to be proven in later sections) for the steady-state
of the three variants. In each case the steady-state weights have the factorized form

F({nµ}) =
M∏
µ=1

fµ(nµ). (2)

The different variants have different expressions forfµ(nµ) as follows.

Parallel dynamics.In this case

fµ(nµ) = (1− pµ) for nµ = 0

=
(

1− pµ
pµ

)nµ
for nµ > 0 (3)

which may be rewritten employing the usual Heaviside function as

fµ(nµ) = (1− pµ)+
[(

1− pµ
pµ

)nµ
− (1− pµ)

]
θ(nµ). (4)

Note that the pure case, which haspµ = p ∀µ recovers a result obtained in [8] through a
combinatorial argument.

Forward-ordered sequential dynamics.To define a steady state for ordered sequential
dynamics one must specify the point in the update sequence to which the steady state refers.
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For forward updating we define the steady state as that after the update of particleM (the
final update of the sequence). That is, the steady-state weights are those for finding the
system in a given configuration after the last update of a sequence, and before the first
update of the next sequence. In this case

fµ(nµ) = (1− pµ)+
[(

1− pµ
pµ

)nµ
− (1− pµ)

]
θ(nµ) for µ 6= M

fM(nM) =
(

1− pM
pM

)nM
. (5)

Backward-ordered sequential dynamics.In this case the steady state again refers to the
weight for finding the system in a given configuration after the final update of the sequence,
this time the update of particle 1

fµ(nµ) =
(

1− pµ
pµ

)nµ
for µ 6= M

fM(nM) = (1− pM)+
[(

1− pM
pM

)nM
− (1− pM)

]
θ(nM). (6)

Before proving the steady states (4)–(6) we discuss the implications of the form (2).

3. Phase transition and analogy with Bose condensation

A steady state of the factorized form (2) gives rise to the possibility of a phase transition.
In [37] the analogy with Bose condensation was made. Let us briefly review the qualitative
aspects of the phase transition and the analogy.

The two phases exhibited by the model are a congested phase that exists at high density
and an inhomogeneous phase that exists at low density. In the congested phase, the velocity
of particles is limited by the availability of empty sites, whereas in the inhomogeneous phase
the velocity is limited by the hopping rate of the slowest particle. Thus, the inhomogeneous
phase may be pictured as comprising two regions: a traffic jam behind the slowest particle (a
high-density region) and empty space in front of the slowest particle (a low-density region).
The analogy with Bose condensation is to think of the empty sites as bosons and the state
of a boson as determined by which car it is immediately in front of. Then in the congested
phase the bosons are thinly spread over all the Bose states (i.e. there are uniformly small
gaps between the particles) whereas in the inhomogeneous phase the bosons are condensed
in front of the slowest particle (there is a large empty space in front of the slowest particle).

Before exploring the analogy with Bose condensation we shall discuss the mathematics
of how calculations are performed. We first focus on the case of parallel dynamics and
extend the results to ordered sequential dynamics in section 3.3.

To calculate quantities of interest, in particular steady-state averages, one must first have
at hand expressions for the normalizationZN,M of the weights (2) defined through (1). Due
to the constraint ofN −M holes the normalization may be written

ZN,M =
∑

n1,n2...nM

δ∑
µ nµ, (N−M)

M∏
µ=1

fµ(nµ). (7)

This quantity may be considered as the canonical partition function of a thermodynamic
system and in the standard way [42] it may be written by using an integral representation
of the delta function as

ZN,M =
∮

dz

2π i
z−(N−M+1)Z(z). (8)
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where the grand canonical partition functionZ is given by

Z(z) =
M∏
µ=1

[ ∞∑
nµ=0

znµfµ(nµ)

]
. (9)

For largeN,M, (8) is dominated by the saddle point of the integral andz∗, the value ofz
at the saddle point, is the fugacity.

We now calculate the velocityv, defined as the steady-state average of the rate of
hopping of a given particle. Since the particles cannot overtake each other, the velocity is
the same for any particleµ. Takingµ = 1 one finds

v = Z−1
N,M

∮
dz

2π i
z−(N−M+1)

[
p1

∞∑
n1=1

zn1 f1(n1)

]
M∏
µ=2

[ ∞∑
nµ=0

znµfµ(nµ)

]
(10)

'
[
p1

∞∑
n1=1

(z∗)n1 f1(n1)

][ ∞∑
n1=0

(z∗)n1 f1(n1)

]−1

for largeN,M (11)

= z∗

1+ z∗ (12)

where the last equality results from performing the geometric series obtained when (4) was
inserted into (11).

In the following the thermodynamic limit is defined by

N →∞ with M = ρN (13)

with the densityρ held fixed. In order to determine the fugacity one uses the condition

N −M = z ∂ lnZ
∂z

(14)

which is the saddle-point condition for (8) (or equivalently the condition that in the grand
canonical ensemble the average number of empty sites isN −M). Using (4) one finds that
(9) becomes

Z(z) =
M∏
µ=1

[
1− pµ + (1− pµ)z

pµ − (1− pµ)z
]

(15)

and (14) yields

N −M = z

1+ z
M∑
µ=1

1

pµ − (1− pµ)z . (16)

Now using the relation betweenz∗ andv (12), one obtains in the thermodynamic limit

1− ρ = v(1− v) 1

N

M∑
µ=1

1

pµ − v . (17)

3.1. The disorder average

In the following we shall consider the particle hopping probabilitiespµ as quenched random
variables drawn from a common distribution [38]

P(p) = (γ + 1)

(1− c)γ+1
(p − c)γ (18)

with support on the interval [c, 1). Other distributions may also be considered [37], but the
qualitative behaviour is determined by the powerγ .
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For the disordered system one wishes to obtain properties given by a typical realization
of the disorder (here the particle hopping probabilities), for example the typical velocity.
Usually in the theory of disordered systems one expects quantities such asv to self-average
but quantities exponentially large in the system size, such asZN,M , not to. That is, one
expects asN → ∞, v → v with probability 1, where the bar indicates an average over
the particle hopping probabilities. When working in the grand canonical ensemble one has
directly an equation forv in the thermodynamic limit, (17). Thus, with the assumption that
v is self-averaging, one simply has to average (17) to obtain an equation for the typical
velocity.

Now, in the thermodynamic limit (13), the fraction of particles with hopping probabilities
betweenp andp + dp converges toP(p)dp. Equally, the velocity of the slowest particle
converges toc. For the sake of clarity, however, it is convenient to assume that the slowest
particle, taken to be particle 1, has a velocity exactly equal toc. Therefore (17) may be
replaced by

1− ρ = ρ(1− v)I (v)+ 〈n1〉
N

(19)

where

I (v) =
∫ 1

c

dpP(p) v

p − v . (20)

Since the right-hand side of (16) is an increasing function ofz we deduce that the right-
hand side of (17) is an increasing function ofv. However,z was introduced in (8) as a
contour integration variable therefore the saddle pointz∗ must lie between 0 and any pole
in the integrand of (8). Owing to this, the maximum valuez can take isc/(1− c) and the
maximum value ofv is c.

If integral (20) diverges asv → c then (19) can always be satisfied withv < c and
〈n1〉/N zero. However, it turns out that for the distribution (18) withγ > 0, I (v) is always
finite asv→ c from below. Therefore when

I (c) <
(1− ρ)
ρ (1− c) (21)

which holds forρ below a critical valueρc, (19) can only be satisfied withv → c and
〈n1〉/N non-zero. As (19) expresses the constraint in the number of holes, we see that in
this case a finite fraction of the holes must reside in front of the slowest particle. Thus,
we have the inhomogeneous low-density phase. On the other hand, forρ > ρc, (19) may
be satisfied forv < c and 〈n1〉/N zero, in which case we have the high-density congested
phase.

By this point the qualitative analogy with Bose condensation should be apparent.
However, we first remark that the exact mapping onto an ideal Bose gas found for random
sequential dynamics [16, 37] no longer holds. In the mapping,nµ is viewed as the occupation
number of theµth Bose state; applying this to equation (4) one sees that in the parallel
update system an unoccupied Bose state is penalized. This effective repulsion between
particles already occurs in the pure case [8]. Secondly, for random sequential dynamics the
velocity was exactly equivalent to the fugacity of an ideal Bose gas [37], whereas in the
present case althoughv is still an increasing function ofz∗, the relation is modified to (12).
Nevertheless, the analogy with Bose condensation remains useful. The slowest particle
corresponds to the Bose ground state and the distribution of particle hopping probabilities
P(p) corresponds to the density of states of the Bose gas. Thus, the transition to the
inhomogeneous phase corresponds to a condensation of a finite fraction of bosons into the
Bose ground state (i.e. a finite fraction of the holes reside in front of the slowest particle).
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3.2. Critical behaviour

In order to analyse the phase transition we require at our disposal the asymptotic behaviour
of (19) asv→ c. The expansion inε where

ε = ln
[ c
v

]
' c − v

c
asv→ c (22)

is carried out in the appendix. The result is
for

γ < 1 I (v) = (1+ γ )c
γ (1− c) + (1+ γ )

(
c

1− c
)1+γ

0(1+ γ )0(−γ )εγ + · · · (23)

for

γ = 1 I (v) = 2c

(1− c) + 2

(
c

1− c
)2

ε ln(ε)+ · · · (24)

for

γ > 1 I (v) = (1+ γ )c
γ (1− c) −

(1+ γ )c
γ (1− c)

[
1+ c

(1− c)
γ

(γ − 1)

]
ε + · · · (25)

from (23)–(25) we see thatI (c) = (1+ γ )c/(γ (1− c)) which implies, together with the
condition for the transition (21), that the critical value ofρ is

ρc = γ

γ + c + γ c . (26)

One should note that forγ = 0 (a flat distribution of hopping probabilities) the transition
to a congested phase occurs at zero density.

As ρ is increased above the critical value the velocity decreases fromc according to
for

γ < 1 v ' c −
[

(1− c)γ
ρ2
c c 0(1+ γ ) |0(−γ )|

]1/γ

(ρ − ρc)1/γ + · · · (27)

for

γ = 1 v ' c − (1− c)
2ρ2

c c

(ρ − ρc)
| ln(ρ − ρc)| + · · · (28)

for

γ > 1 v ' c − (1− c)γ (γ − 1)

ρ2
c (1+ γ )

[
c + (γ − 1)(1− c)] (ρ − ρc)+ · · · . (29)

One can also consider the current or throughputJ defined by

J = ρv. (30)

In the inhomogeneous phase (ρ < ρc) the current increases linearly withρ and J = cρ.
Using expansions (27)–(29) the behaviour of the current in the high-density congested
phase can be analysed. Just above the transition the current increases withρ if γ < γ ∗ but
decreases ifγ > γ ∗ where

γ ∗ = 1− c + c2

2(1− c)
[
1+

√
1+ 4(1− c)c2/(1− c + c2)2

]
. (31)

Thus, the maximum current is achieved in the high-density phase ifγ < γ ∗ and exactly at
the phase transition ifγ > γ ∗. However, it does not appear thatγ ∗ is universal because it
depends onc, i.e. it depends on the particular choice ofP(p).
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3.3. Ordered sequential dynamics

For forward sequential or backward sequential dynamics the velocity may be defined as
the probability that thefirst particle in the updating sequence hops forward. It is easy to
check that (12) is still the correct expression for the velocity in both these cases so that the
velocity is always related to the fugacity in a simple way. By performing the sums in (9)
one obtains for forward updating

Z(z) =
M−1∏
µ=1

[
1− pµ + (1− pµ)z

pµ − (1− pµ)z
] [

pM

pM − (1− pM)z
]

(32)

and for backward updating

Z(z) =
M−1∏
µ=1

[
pµ

pµ − (1− pµ)z
] [

1− pM + (1− pM)z
pM − (1− pM)z

]
. (33)

For forward updating the saddle-point value of the fugacityz and hence the velocity
will be the same as for parallel updating, implying the same critical density. However,
for backward updating (33) gives a different saddle-point value ofz to (15), and it can be
checked that (19) is modified to(

1− ρ
ρ

)
= (1− v) I (v)− v (34)

giving

ρc = γ

c + γ . (35)

We see that for backward updatingρc is greater than for parallel and forward updating which
share the sameρc given by (26). Since the velocity in the low-density phase is greater than
that in the high-density phase, this means that backward updating yields the best throughput.
One might expect this because backward updating increases the chance that the site in front
of the next particle to be updated has just been vacated. One can also calculate the critical
density for random sequential dynamics [37, 38] to findρc = γ (1− c)/(c + γ ) which is
lower than both (35) and (26). This implies that random sequential updating gives the
poorest throughput.

4. Proof of steady state for ordered sequential and parallel dynamics

In all three variants of the model considered here the updating rules comprise a determined
time-step. Therefore a transfer matrix may be used to express the condition for the steady-
state weights as∑

C ′
T (C, C ′)F (C ′) = F(C) (36)

whereT (C, C ′) are the components of the transfer matrix. In (36)T (C, C ′) is the probability
of going from configurationC ′ to C in one time-step andT (C, C) is the probability of
remaining in configurationC after a time-step. A configuration is specified by the hole
occupation numbersC = {n1, . . . , nM}. We see from (36) that the steady-state weights form
an eigenvector of the transfer matrix with eigenvalue 1.

In the construction of the transfer matrix which follows, it is convenient to use an
operator notation. Each configuration{n1, . . . , nM} has an associated vector| n1, . . . , nM〉,
to be referred to as the configuration vector. The configuration vectors| n1, . . . , nM〉 form
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an orthonormal basis for the vector space of configurations. We write the weight of a
configuration as

F(n1, . . . , nµ) = 〈F | n1, . . . , nµ〉. (37)

Thus, the the weight of a configuration{n1, . . . , nM} is the component in the direction
〈n1, . . . , nM | of the bra vector〈F |.

With this notation we may rewrite (36) as

〈F |T̂ | n1, . . . , nµ〉 = 〈F | n1, . . . , nµ〉 (38)

whereT̂ is an operator acting on the space of configuration vectors defined above:T̂ acting
on a given configuration vector generates the possible configuration vectors before an update
multiplied by the appropriate transition probabilities. We shall refer toT̂ as the transfer
matrix as well as its componentsT (C, C ′). Our task is now to construct̂T .

4.1. Construction of the transfer matrices

In this section we construct the transfer matrix for all three variants of the dynamics. The
desired form is of a trace of a product of matrices, each of which contains as elements
operators acting at the relevant site [39]. The technique is most directly illustrated in the
case of ordered sequential dynamics, which we consider first in this section.

The transfer matrix for a full time-step of ordered sequential dynamics may be written
as an ordered product ofM operatorshµ−1 µ corresponding to the update of each particleµ

in sequence. Recalling thatT̂ acting on| n1, . . . , nµ〉 generates the possible configurations
leading to| n1, . . . , nµ〉, one deduces that to correctly generate these configurations we first
act on | n1, . . . , nµ〉 with an operator corresponding to the last update of the sequence,
then with an operator corresponding to the second last update, etc so that for the forward
updating

T̂F =
M∏
µ=1

hµ−1µ. (39)

By similar reasoning, for backward updating the transfer matrixTB is

T̂B =
M∏
µ=1

hM−µM−µ+1. (40)

In both cases the operatorhµ−1µ is given by

hµ−1µ = 1I− pµaµa†µ + pµa†µ−1aµ (41)

whereaµ is a raising operator anda†µ is a lowering operator acting on the vector space
spanned by|n1, . . . , nM〉:

aµ|n1, . . . , nµ, . . . , nM〉 = |n1, . . . , nµ + 1, . . . , nM〉 (42)

a†µ|n1, . . . , nµ, . . . , nM〉 = |n1, . . . , nµ − 1, . . . , nM〉 if nµ > 0 (43)

= 0 if nµ = 0 (44)

and one may verify that

hµ−1µ|n1, . . . , nM〉 = (1− pµθ(nµ))|n1, . . . , nM〉
+pµθ(nµ−1)|n1, . . . , nµ−1− 1, nµ + 1, . . . , nM〉

correctly giving the configurations leading to|n1, . . . , nM〉 after the update of particleµ.
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To proceed further we employ techniques used in the study of integrable models [39].
First it is easy to check that (41) may be rewritten in two ways as

hµ−1µ = (1I, a†µ−1)

(
1I− pµaµa†µ

pµaµ

)
(45)

= (1I− pµaµa†µ, pµaµ)
(

1I
a
†
µ−1

)
. (46)

Equations (45) and (46) are to be read as a scalar product in an auxiliary space (see below).
On inserting (45) into (39),̂TF becomes

T̂F = (1I, a†M)
[M−1∏
µ=1

(
1I− pµaµa†µ a†µ − pµaµa†µa†µ

pµaµ pµaµa
†
µ

)](
1I− pMaMa†M

pMaM

)
(47)

which may be rewritten as

T̂F = Trace

[M−1∏
µ=1

(
1I− pµaµa†µ a†µ − pµaµa†µa†µ

pµaµ pµaµa
†
µ

)(
1I− pMaMa†M (1− pM)a†M

pMaM pM1I

)]
.

(48)

To obtain (48) from (47) it may be checked that for arbitrary commuting operatorsxi and
yi and arbitrary operatorszi , one has the identity

(x1, x2)

(
y1 y2

y3 y4

)(
z1

z2

)
= Trace

[(
y1 y2

y3 y4

)(
x1z1 x2z1

x1z2 x2z2

)]
. (49)

We stress here that (48) is merely a convenient way of writing the sums of products
of the operators 1I, aµ, a†µ which form the transfer matrix. The 2× 2 matrices appearing in
(48), whose elements are made up of the operators 1I, aµ, a

†
µ may be thought of as acting in

some auxiliary space. The trace is carried out in this auxiliary space and not in the space
in which the operators 1I, aµ, a†µ act.

In a similar fashion one can construct the transfer matrix for backward updating, this
time using (46) in (40). One obtains

T̂B = Trace

[(
1I− pMaMa†M pMaM

a
†
M − pMaMa†Ma†M pMaMa

†
M

)
×
M−1∏
µ=1

(
1I− pM−µaM−µa†M−µ pM−µaM−µ
(1− pM−µ)a†M−µ pM−µ1I

)]
. (50)

Finally, to construct the transfer matrix for parallel dynamicsT̂P one should first realize
that it is closely related tôTF since for forward updating each particle is unaffected by the
results of previous updates in the sequence, except for the final particleM. After a little
reflection it can be confirmed that

T̂P = Trace

[ M∏
µ=1

(
1I− pµaµa†µ a†µ − pµaµa†µa†µ

pµaµ pµaµa
†
µ

)]
. (51)

4.2. Proof of the steady state

It was stated in section 2.1 that the steady state is given by (2), withfµ(nµ) obeying (4)
for parallel dynamics, (5) for forward sequential dynamics and (6) for backward sequential
dynamics. The proof is quite similar in all three cases. We shall describe it in detail first
for the case of parallel dynamics where the transfer matrix has the form (51). At the end
of this section we shall return to forward sequential then backward sequential dynamics.
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We first note that the vector space spanned by|n1, . . . , nµ〉 is a tensor product ofM
spaces each with basis vectors|nµ〉 wherenµ = 0 · · ·∞

|n1, . . . , nµ〉 = |n1〉 ⊗ |n2〉 · · · ⊗ |nM〉. (52)

Thus the action of the transfer matrix for parallel dynamics (51) on (52) may be written as

T̂P |n1, . . . , nM〉 = Trace

[ M∏
µ=1

(
(1I− pµaµa†µ)|nµ〉 (a†µ − pµaµa†µa†µ)|nµ〉

pµaµ|nµ〉 pµaµa
†
µ|nµ〉

)]
(53)

where the product, in fact, indicates a tensor product in the configuration space (as well as a
usual product in the auxiliary space of two by two matrices) and the operators 1I, aµ, a

†
µ act

on the space spanned by|nµ〉. To keep the notation light we have not explicitly indicated
these matters, but the meaning is clear.

We are now in a position to prove the expression for the steady state given by (4) and
(2). If the steady state is of the factorized form(2) we have

〈F | =
∑
{nµ}

[
f1(n1)〈n1|

]⊗ [f2(n2)〈n2|
] · · · ⊗ [fm(nm)〈nm|] (54)

and one finds from (53) and (54) that

〈F |T̂P |n1, . . . , nM〉 = Trace

[ M∏
µ=1

Bµ(nµ)

]
(55)

where

Bµ(0) =
(

fµ(0) 0
pµfµ(1) 0

)
(56)

Bµ(1) =
(
(1− pµ)fµ(1) fµ(0)
pµfµ(2) pµfµ(1)

)
(57)

and forn > 1

Bµ(n) =
(
(1− pµ)fµ(n) (1− pµ)fµ(n− 1)
pµfµ(n+ 1) pµfµ(n)

)
. (58)

Inserting the expressions forfµ(n) given in (4), and employing the Heaviside function we
may rewrite (56)–(58) as

Bµ(n) = fµ(n)Aµ(n) (59)

where

Aµ(n) =
(

1− pµθ(n) pµθ(n)

1− pµθ(n) pµθ(n)

)
. (60)

To prove the steady state (2) we must show that〈F |T̂P |n1, . . . , nM〉 =
∏M
µ=1 fµ(nµ). Thus,

on inserting (59) into (55), we see that it remains to show

Trace

[ M∏
µ=1

Aµ(nµ)

]
= 1. (61)

In order to do this we seek a similarity transformation

Ãµ(n) = LµAµ(n)Rµ+1 with RµLµ = 1I (62)

that putsAµ(n) into the form

Ãµ(n) =
(

1 x

0 0

)
(63)
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wherex is any number. The trace of a product of such matrices (63) is clearly unity thus
satisfying (61). A similarity transformation which fulfils (62), (63) is straightforward to
construct. Taking

Rµ =
(

1 pµ
1 −(1− pµ)

)
and Lµ =

(
1− pµ pµ

1 −1

)
(64)

it is easy to verify thatRµLµ = 1I and

Ãµ(n) = LµAµ(n)Rµ+1 =
(

1 pµ+1− pµθ(n)
0 0

)
(65)

hence (4) is proven.
In a similar manner the steady state for forward updating may be proven. Here we only

provide a few key points. Following steps (53)–(60), now using (48) as the transfer matrix
one finds that (60) holds forµ < M and

AM(n) =
(

1− pMθ(n) pMθ(n)

1− pM pM

)
. (66)

The similarity transformation (62) then gives

ÃM(n) =
(

1 p1− p2
M − pM(1− pM)θ(n)

0 pM(1− θ(n))
)

(67)

whilst the otherÃµ(n) have the form (63). The trace of a product of theseÃµ(n) again
gives unity.

For backward updating, using (50) for the transfer matrix, one obtains forµ < M

Aµ(n) =
(

1− pµθ(n) 1− pµ
pµθ(n) pµ

)
(68)

and forµ = M
AM(n) =

(
1− pMθ(n) 1− pMθ(n)
pMθ(n) pMθ(n)

)
. (69)

A suitable similarity transform is now

Ãµ(nµ) = RT
µ+1Aµ(nµ)L

T
µ (70)

whereRµ,Lµ are still given by (64). One then obtains forµ < M

Ãµ(n) =
(

1 0
pµ+1− p2

µ − pµ(1− pµ)θ(n) pµ(1− θ(n))
)

(71)

and

ÃM(n) =
(

1 0
p1− pMθ(n) 0

)
. (72)

It is easy to convince oneself that the trace of a product of matrices of form (71) with a
single matrix of form (72) yields unity, thus completing the proof of the steady state for
backward updating.

5. Generalization to hopping probabilities dependent on empty space in front of
particles

In this section we consider hopping probabilities that depend on the number of empty sites
in front of a particle. For this dynamics with random sequential updating, it is known
that the steady state is given by a product measure [44]. Here for the disordered case
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we restrict our attention to parallel updating although it is straightforward to generalize
to ordered sequential updating. Thus for parallel updating, at each time-step particleµ

will hop forward with probabilitypµ(nµ), where we recallnµ is the number of empty
sites in front of particleµ so that clearlypµ(0) = 0. In a traffic model suitably
chosen hopping probabilities could mimic the effect of deceleration when another car is
encountered.

It turns out that the steady state again has the form (2). In this section it will be shown
that

fµ(n) = (1− pµ(1)) for n = 0

= 1− pµ(1)
1− pµ(n)

n∏
k=1

1− pµ(k)
pµ(k)

for n > 0. (73)

In order to prove (73) we generalize the operators used in (41)–(44) by defining new
operatorsaµ(n),bµ(n):

aµ(n)|n1, . . . , nµ, . . . , nM〉 = |n1, . . . , nµ + 1, . . . , nM〉 if nµ = n (74)

= 0 otherwise (75)

bµ(n)|n1, . . . , nµ, . . . , nM〉 = |n1, . . . , nµ, . . . , nM〉 if nµ = n (76)

= 0 otherwise. (77)

The corresponding operator to (41) is now given by

hµ−1µ = 1I−
∞∑
n=1

pµ(n)bµ(n)+ a†µ−1

∞∑
n=1

pµ(n+ 1)aµ(n) (78)

wherea†µ−1 is still defined by (43) and (44). Using the same procedure as outlined in section
4 the transfer matrix (for parallel dynamics) may be constructed as

T̂P = Trace

[ M∏
µ=1

(
1I−∑∞n=1pµ(n)bµ(n) a†µ − [

∑∞
n=1pµ(n)bµ(n)]a

†
µ∑∞

n=1pµ(n+ 1)aµ(n) [
∑∞

n=1pµ(n+ 1)aµ(n)]a†µ

)]
. (79)

Using this transfer matrix and assuming that the steady state is of the form (2), in analogy
with section 4 one arrives at (55) where now

Bµ(n) =
(
fµ(n)(1− pµ(n)) fµ(n− 1)(1− pµ(n− 1))θ(n)
fµ(n+ 1)pµ(n+ 1) fµ(n)pµ(n)

)
(80)

and it should be kept in mind thatpµ(0) = 0. Inserting (73) one finds that it remains to
show that condition (61) is satisfied where this time

Aµ(n) =
(

1− pµ(n) pµ(n)

1− pµ(n) pµ(n)

)
. (81)

It is easy to check that insertingRµ(nµ)Lµ(nµ) (= 1I) before eachAµ(nµ) in the product
(61), where

Rµ(nµ) =
(

1 pµ(nµ)

1 −(1− pµ(nµ))
)

and Lµ(n) =
(

1− pµ(nµ) pµ(nµ)

1 −1

)
(82)

yields the required similarity transformation.

6. Conclusion

In this paper it has been shown that analytical results may be obtained for the asymmetric
exclusion model with parallel dynamics which forms the basis for many discrete models of
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traffic flow. Ordered sequential dynamics have also been treated using similar techniques.
Previously, the steady state for the situation where at each parallel time-step each particle
attempts forward with probabilityp had been solved [8]. Here we have generalized that
model to one where at each time-step each particleµ attempts a hop forward with probability
pµ(nµ), an arbitrary function ofnµ the number of empty sites immediately ahead of particle
µ. The method used to prove the steady state (73) was to construct the transfer matrix using
a technique inspired by [39].

A detailed analysis was made of the case wherepµ did not depend onnµ, and it
was shown that a phase transition analogous to Bose condensation occurs, as it did for
random sequential updating [37]. In particular it is interesting to note that equation (12),
which shows the velocity in the particle system, is intimately related to the fugacity (or
equivalently chemical potential) when the system is viewed as a Bose system. Since
in (single component) equilibrium systems the thermodynamic phase is determined by
minimizing the chemical potential, the suggestion is that in simple traffic flow models
a principle of minimization of velocity pertains.

A simple illustration of this principle is the example of a single slow particle with
hopping ratec while all the other particles have hopping ratep [37]. Then in a phase where
there is a traffic jam behind the slow particle and empty space in front, the velocity isc

whereas in a congested phase the velocity should be given by(1−√1− 4pρ(1− ρ))/(2ρ)
[8]. Choosing the phase with the minimum velocity yields the critical densityρc =
(p − c)/(p − c2). This expression is, in fact, exact as can be checked by using the results
of section 3. It is important to ascertain whether a principle of minimization of velocity
holds in more complicated traffic flow models.

It was also interesting to note that parallel dynamics and forward sequential dynamics
have the same thermodynamic behaviour, for example the same critical density. One expects
this since a time-step of forward updating and a parallel time-step only differ in last update
of the sequence in forward dynamics. However, backward updating has a distinct critical
density as does random sequential updating. Comparing the three critical densities reveals
that the highest is for backward dynamics, the lowest is for random sequential dynamics
and parallel dynamics lies in between. This confirms that backward dynamics is the most
efficient updating scheme in terms of throughput and random sequential is the worst.

It would be interesting to explore other realizations for the case of generalpµ(nµ)

considered in section 5. In particular it should be possible to analyse the effect of a braking
distance for each particle.

The present work narrows the gap betweenbona fidemodels of traffic flow, such as
that of Nagel and Schreckenberg or more sophisticated models [5], and the simple particle
hopping models for which exact results are possible. In order to close the gap further,
analytical results are desirable for models where particles can hop more than one lattice site
at each update. Some progress has already been made towards this [30].

It would also be of interest to analyse more complicated properties of the system such
as relaxation to the steady state, as studied numerically in [38, 41], or else the diffusion
constants of particles [17, 18].
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Appendix: Evaluation of integral (20)

In this appendix we derive expansion (23)–(25) of the integral (20) given by

I (v) = γ + 1

(1− c)γ+1

∫ 1

c

dp
v(p − c)γ
p − v . (A1)

By first defining

v = c exp(−ε) (A2)

(A1) becomes

I (ε) = γ + 1

(1− c)γ+1

∫ 1−c

0
dp

c exp(−ε)pγ
p + c − c exp(−ε) (A3)

and we may follow an analysis similar to that of Robinson [43]. We make the Mellin
transformation

I(s) =
∫ ∞

0
dε I (ε)εs−1 (A4)

which may be expanded to yield

I(s) = γ + 1

(1− c)γ+1

∫ 1−c

0
dp pγ

∞∑
n=0

(
c

p + c
)n+1

0(s)

(n+ 1)s
(A5)

where0(s) is the usual gamma function defined by

0(s) =
∫ ∞

0
dε exp(−ε)εs−1. (A6)

The inverse transformation is

I (ε) = 1

2π i

∫ x+i∞

x−i∞
ds I(s)ε−s (A7)

wherex is a real constant chosen so that the contour of integration is to the right of any pole.
The integral can be evaluated by closing the contour and using the calculus of residues.
The analytic structure of

I(s) = gγ (s)0(s) (A8)

where

gγ (s) = γ + 1

(1− c)γ+1

∫ 1−c

0
dp pγ

∞∑
n=0

(
c

p + c
)n+1 1

(n+ 1)s
(A9)

is as follows. 0(s) has simple poles ats = −n where n = 0, 1, . . . ,∞ with residues
(−1)n/n! and gγ (s) has a simple pole ats = −γ . To evaluate the residue ofgγ (s) at
s = −γ we note the smallp behaviour of the sum involved in (A9)

∞∑
n=0

(
c

p + c
)n+1 1

(n+ 1)s
' 0(1− s)

(p
c

)s−1
for s < 1. (A10)

Thus, one obtains

lim
s→−γ [gγ (s)(s + γ )] = (1+ γ )

(
c

1− c
)1+γ

0(1+ γ ). (A11)

and

I (ε) = (1+ γ )
(

c

1− c
)1+γ

0(1+ γ )0(−γ )εγ +
∞∑
n=0

gγ (−n)
n!

(−ε)n. (A12)
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Expansion (23), (25) is the first two terms in (A12) where it can be computed that

gγ (0) = 1+ γ
γ

c

1− c (A13)

gγ (−1) = 1+ γ
γ

c

1− c
[

1+ γ

γ − 1

c

1− c
]
. (A14)

For γ → 1, the singularity in (A14) cancels with the singularity in the first term on the
right-hand side of (A12) and one obtains

I (ε) = gγ (0)+ lim
γ→1

[
(1+ γ )

(
c

1− c
)1+γ

0(1+ γ )0(−γ )εγ − gγ (−1)ε

]
+ · · ·

= gγ (0)+ 2

(
c

1− c
)2

ε ln ε +O(ε). (A15)
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